ANALYSIS 3 NOTES

NICHOLAS HAYEK

Lectures by Prof. Linan Chen

CONTENTS

I Measure	1
Motivation	1
σ -Algebras	1
Measurable Spaces	2

I Measure

MOTIVATION

In Analysis 3, we will formalize the concept of measure and study integration 8/28/23 further. As motivation, consider the lower and upper Riemann integral:

$$\int_{a}^{b} f(x)dx := \inf\left\{\sum_{i=1}^{n} \sup f_{[x_{i-1},x_i]}(x_i - x_{i-1})\right\}$$
$$\int_{a}^{b} f(x)dx := \sup\left\{\sum_{i=1}^{n} \inf f_{[x_{i-1},x_i]}(x_i - x_{i-1})\right\}$$

where $a = x_0 < x_1 < ... < x_n = b$. Recall that f is called Riemann integrable if $\overline{\int}_a^b f = \underline{\int}_a^b f$, and we write instead $\int_a^b f$. Note that not all functions are integrable in this sense. For example:

Consider $f : [0, 1] \to \mathbb{R}$ such that f(x) = 1 if $x \in \mathbb{Q} \cap [0, 1]$ and 0 otherwise. Since \mathbb{Q} and \mathbb{Q}^c are both dense in \mathbb{R} , and in particular [0, 1], we conclude that $\overline{\int}_a^b f = 1$ and $\int_a^b f = 0$. Thus, f is not Riemann integrable.

We introduce the Lebesgue integral as an alternative. Let $A_i := \{x \in [a, b] : y_i \le f(x) < y_{i+1}\}$, where the y_i 's are increasing. See that now $\sum y_i |A_i| \approx \int_a^b f$. The following questions arise from this:

- 1. What *is* the "size" of A_i ?
- 2. What sets can we measure?

σ -ALGEBRAS

Let *X* be a non-empty set, and let \mathcal{F} be a collection of subsets of *X*. We call \mathcal{F} a σ -algebra of subsets of *X* if the following hold:

- 1. $X \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ ("closed under compliments")
- 3. If $\{A_n : n \ge 1\} \subseteq \mathcal{F}$, then $\bigcup_{n=1}^{\infty} \in \mathcal{F}$ ("closed under countable unions").

We can derive the following from these axioms:

Prop. 1.1

	2. If $\{A_n : n \ge 1\} \subseteq \mathcal{F}$, then $\bigcap_{i=1}^{\infty} \in \mathcal{F}$
	3. If $A_1,, A_N \in \mathcal{F}$, then $\cap A_i$ and $\cup A_i \in \mathcal{F}$
$A \triangle B := (A \setminus B) \cup (B \setminus A)$	4. If $A, B \in \mathcal{F}$, then $A \setminus B, B \setminus A$, and $A \triangle B \in \mathcal{F}$
	For a set <i>X</i> , consider $\mathcal{F} = 2^X := \{A : A \subseteq X\}$, the powerset of <i>X</i> . This is the largest σ -algebra of <i>X</i> . The smallest one can construct is $\mathcal{F} = \{\emptyset, X\}$. If we'd like to include a particular subset of <i>X</i> , say <i>A</i> , we can write $\mathcal{F} = \{\emptyset, X, A, A^c\}$.
	Let <i>X</i> be a space and <i>C</i> be a collection of subsets of <i>X</i> . The σ -algebra generated by <i>C</i> , denoted by $\sigma(C)$, is defined by the following:
	1. $\sigma(\mathcal{C})$ is a σ -algebra with $\mathcal{C} \subseteq \sigma(\mathcal{C})$
	2. If \mathcal{F} is a σ -algebra with $\mathcal{C} \subseteq \mathcal{F}$, then $\mathcal{F} \supseteq \sigma(\mathcal{C})$.
We also say that $\sigma(\mathcal{C})$ is the " σ -algebra generated by \mathcal{C} "	In other words, $\sigma(C)$ is the smallest σ -algebra which contains C . From the example above, we can write $\sigma(A) = \{\emptyset, X, A, A^c\}$.
Prop 1.2	We can state the following about σ -algebras generated by \mathcal{C} :
	1. $\sigma(\mathcal{C}) = \cap \{\mathcal{F} : \mathcal{F} \text{ is a } \sigma\text{-algebra}, \mathcal{C} \subseteq \mathcal{F}\}$
	2. If C is a σ -algebra, then $\sigma(C) = C$
	3. If C_1 and C_2 are such that $C_1 \subseteq C_2$, then $\sigma(C_1) \subseteq \sigma(C_2)$.
Proofs.	1. Let \mathcal{D} be some σ -algebra containing \mathcal{C} , and let $\{\mathcal{F}_i\}$ denote all σ -algebras containing \mathcal{C} . Then $\bigcap_{i=1}^{\infty} \{\mathcal{F}_i\} \subseteq \mathcal{D}$, since $\mathcal{D} \in \{\mathcal{F}_i\}$. We also have to show that $\bigcap_{i=1}^{\infty} \{\mathcal{F}_i\}$ is a σ -algebra. Clearly $X \in \bigcap_{i=1}^{\infty} \{\mathcal{F}_i\}$, since it must be in all \mathcal{F}_i . Now, let $A \in \bigcap_{i=1}^{\infty} \{\mathcal{F}_i\}$. Then $A \in \mathcal{F}_i \ \forall i$, so $A^c \in \mathcal{F}_i \ \forall i$. Thus, $A^c \in \bigcap_{i=1}^{\infty} \{\mathcal{F}_i\}$. Similarly, suppose $\{A_n\} \subseteq \bigcap_{i=1}^{\infty} \{\mathcal{F}_i\}$. Then $\{A_n\} \subseteq \mathcal{F}_i \ \forall i$, and therefore $\bigcup_{n=1}^{\infty} \{A_n\} \in \mathcal{F}_i \ \forall i$, so we conclude $\bigcup_{n=1}^{\infty} \{A_n\} \in \bigcap_{i=1}^{\infty} \{\mathcal{F}_i\}$. Hence, $\{F_i\}$ is a σ -algebra.
	2. Suppose otherwise. Then \exists a σ -algebra containing fewer subsets than C , and yet containing at least all subsets of C . This cannot be.
	3. Note that $\{\mathcal{F} : \mathcal{C}_1 \subseteq \mathcal{F}\} \supseteq \{\mathcal{F} : \mathcal{C}_2 \subseteq \mathcal{F}\}$, since $\mathcal{C}_1 \subseteq \mathcal{C}_2$. Thus, $\cap \{\mathcal{F} : \mathcal{C}_1 \subseteq \mathcal{F}\} \subseteq \cap \{\mathcal{F} : \mathcal{C}_2 \subseteq \mathcal{F}\}$, so $\sigma(\mathcal{C}_1) \subseteq \sigma(\mathcal{C}_2)$.
	MEASURABLE SPACES
8/30/23	A <i>Borel</i> σ -algebra, denoted $\mathscr{B}_{\mathbb{R}}$, is the σ -algebra generated by all the open subsets of \mathbb{R} .
Prop. 1.3	Recall that, for any open $G \subseteq \mathbb{R}$, we can write $G = \bigcup_{n=1}^{\infty} I_n$, where I_n are finite, disjoint, open intervals.
Proof.	

Let *G* be open. Consider any $x \in G \cap \mathbb{Q}$. *G* is open $\implies \exists$ an open $x \in I \subseteq G$. Choose the largest such interval (i.e. the union of all intervals containing *x*). One may associate any rational number in *G* with an interval of this kind.

Furthermore, for $y \in G \cap \mathbb{Q}^c$, \exists a neighborhood which necessarily contains a rational number (by density), and is therefore contained within an *I*. Note now: the set of *I*'s are countable, since they are generated by elements of \mathbb{Q} ; the set of *I*'s are pairwise disjoint, since, otherwise, the union of intersecting sets would constitute a larger-than-maximal set containing *x*.

The generation of $\mathscr{B}_{\mathbb{R}}$ is *not* unique, so while $\sigma\{(a, b) : a, b \in \mathbb{R}, a < b\}$ is obvious, there exist other equivalent descriptions:

$$\mathcal{B}_{\mathbb{R}} = \sigma\{(a, b] : a, b \in \mathbb{R}, a < b\}$$
$$= \sigma\{[a, b] : a, b \in \mathbb{R}, a < b\}$$
$$= \sigma\{[a, b) : a, b \in \mathbb{R}, a < b\}$$
$$= \sigma\{(-\infty, c) : c \in \mathbb{R}\}$$
$$= \sigma\{(c, \infty) : c \in \mathbb{R}\}$$

As proof of $\mathscr{B}_{\mathbb{R}} = \sigma(\{[a, b) : a < b\})$, it is sufficient to show that (a, b) is in this set, and similarly that [a, b) is in $\sigma\{(a, b) : a < b\}$. For the first, we can write $(a, b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b)$, and for the second, $[a, b) = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b)$

If $A \in \mathscr{B}_{\mathbb{R}}$, we call A a *Borel set*. All intervals on \mathbb{R} are Borel, and any set produced by a countable series of set operations (union, intersection, compliment, difference) is also Borel. Lastly, note that $\{x\}$ are Borel for $x \in \mathbb{R}$, so therefore all countable or finite sets in \mathbb{R} are Borel.

Given a space *X* and a σ -algebra \mathcal{F} of subsets of *X*, we call (*X*, \mathcal{F}) a *measurable space*.

Given a measurable space (*X*, \mathcal{F}), define $\mu : \mathcal{F} \to [0, \infty]$. μ is called a *measure* if the following hold:

1. $\mu(\emptyset) = 0$

2. If
$$\{A_n : n \ge 1\} \subseteq \mathcal{F}$$
, where $A_i \cap A_j = \emptyset$, then $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$

We classify a few types of measures:

- 1. If $\mu(X) < \infty$, we call μ a finite measure.
- 2. If $\mu(X) = 1$, we call μ a probability measure.
- 3. If $\exists \{A_n : n \ge 1\} \subseteq \mathcal{F}$ with $\bigcup_{n=1}^{\infty} A_n = X$ and $\mu(A_n) < \infty \forall n$, we call μ a σ -finite measure.

e.g. the Cantor set

e.g. $(\mathscr{B}_{\mathbb{R}}, \mathbb{R})$

Take $[x - 1, x] \cap [x, x + 1]$.

Should feel similar to some of Kolmogorov's axioms...

Finally, we call (X, \mathcal{F}, μ) a *measure space*.

Examples:

 $\mu: \mathscr{B}_{\mathbb{R}} \to [0, \infty] \text{ with } \mu(A) = \begin{cases} |A| \text{ if } A \text{ if finite} \\ \infty \text{ o.w.} \end{cases} \text{ is called the "counting measure"}$ Fix $x \in \mathbb{R}$. $\mu: \mathscr{B}_{\mathbb{R}} \to [0, \infty]$ with $\mu(A) = \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ o.w.} \end{cases}$ is the "Dirac measure"

1.1 **Properties of Measure**

Let (X, \mathcal{F}, μ) be a measure space. Then:

- (i) If $A_1, ..., A_N \in \mathcal{F}$ are disjoint, then $\mu(A_1 \cup ... \cup A_N) = \sum_{i=1}^N \mu(A_i)$
- (ii) If $A \subseteq B$, then $\mu(A) \leq \mu(B)$.
- (iii) If $\{A_n : n \ge 1\} \subseteq \mathcal{F}$, then $\mu(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu(A_n)$. This also holds for finite collections.
- (i) Let $A_i = \emptyset \ \forall i > N$. The result follows from axiom 1.
- (ii) Write $B = A \cup (B \setminus A) \implies \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$.
- (iii) Set $B_1 = A_1$ and $B_n = A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$ for $n \ge 2$. Then B_n are pairwise disjoint $\forall n$, so we can write $\mu(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} \mu(B_n) \le \sum_{n=1}^{\infty} \mu(A_n)$. Lastly, notice that $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$ to conclude that $\mu(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu(A_n)$. \Box

If $A \in \mathcal{F}$ with $\mu(A) = 0$, we call *A* a *null set*. Note that the union of null sets is a null set.

PROP 1.4 (Continuity from Below)

Proof.

Given
$$\{A_n : n \ge 1\} \subseteq \mathcal{F}$$
 with $A_n \subseteq A_{n+1}$, $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

We call $\{A_n\}$ with $A_n \subseteq A_{n+1}$ increasing, and write $A_n \uparrow$. Set $B_1 = A_1$, and $B_n = A_n \setminus A_{n-1} \forall n \ge 2$. Then $\{B_n : n \ge 1\} \subseteq \mathcal{F}$ are disjoint, and $\bigcup_{n=1}^{\infty} B_n = A_n \setminus A_{n-1} \forall n \ge 2$.

Proof.

 $\bigcup_{n=1}^{\infty} A_n$. Similarly, $N \ge 1$, $\bigcup_{n=1}^{N} B_n = A_N$. Combining, we have

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \mu(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} \mu(B_n) = \lim_{N \to \infty} \sum_{n=1}^{N} \mu(B_n) = \lim_{N \to \infty} \left(\bigcup_{n=1}^{N} B_n\right)$$
$$= \lim_{N \to \infty} \mu(A_n) \qquad \Box$$

We have the similar property that, given $\{A_n : n \ge 1\} \subseteq \mathcal{F}$, where $A_n \supseteq A_{n+1}$, $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$ IF the measure of this intersection is finite.

This assumption is indeed necessary: take the counting measure over $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, and let $A_n := \{n, n + 1, n + 2, ...\}$. Clearly $A_n \downarrow$, and $\mu(A_n) = \infty \forall n \ge 1$. We find, though, that $\bigcap_{n=1}^{\infty} A_n = \emptyset$, and so $\mu(\bigcap_{n=1}^{\infty} A_n) = 0$.

PROP 1.5 (Continuity from Above) or, $\exists j : \mu(A_j) < \infty$